webvic-b

Technology

The partnership marks a significant milestone in the agriculture sector. (Image source: Adobe Stock)

Orchard harvest equipment manufacturer, Flory Industries and leading orchard harvest autonomy provider, Bonsai Robotics have recently announced their collaboration to develop a product which will be unveiled at the upcoming World Ag Expo, scheduled to be held in the city of Tulare, California next year

Focusing on nut sweepers, Flory's Super V sweeper is already arguably the most efficient piece of nut harvesting equipment available today. With the integration of Bonsai's technology, it is expected to enhance the operator's productivity even more, while also reducing operational costs, and increasing sustainability in farming practices. By combining Flory's extensive experience and market presence with Bonsai's innovative technological prowess, this partnership therefore, marks a significant milestone in the agriculture sector.

"At Bonsai, we are thrilled to partner with Flory, a company that shares our vision for the future of agriculture," said CEO of Bonsai Robotics, Tyler Niday. "This collaboration allows us to bring our advanced robotics technology to a wider market, revolutionising how farming is done. The Super V sweeper is just the beginning of what we believe will be a transformative era in agricultural technology."

For more information, visit: https://www.goflory.com/ and https://www.bonsairobotics.ai/ 

Robot crowd-puller at the DLG Field Days 2022 at the Kirschgartshausen trial farm in Mannheim. (Image source: DLG)

The FarmRobotix platform celebrates premiere at the DLG Feldtage 2024, which will take place from 11-13 June at the estate Brockhof in Germany

Aimed at farmers, manufacturers, start-ups and technology providers, FarmRobotix offers an international platform farmers and experts seeking compact and comprehensive information on the latest developments in robotics, AI, automation and digital solutions in crop production. Moreover, besides the option to explore innovative technologies, the platform also offers networking and knowledge sharing opportunities to representatives from science and research as well as development engineers, investors and venture capitalists. 

With a focus on farming requirements for digital technologies, FarmRobotix plays a role in solving the challenges that lie in the application of digital and autonomous technologies in crop farming. For instance, although a plethora of digital solutions are available to farmers for performing crop cultivation tasks, each digital solution provider supplies a customised software system to use the digital tools and data. Therefore, their application requires prior knowledge on part of the user. 

This is where the FarmRobotix system comes into picture. Florian Schiller, an expert in digitalisation at the International DLG Crop Production Centre (IPZ) in Bernburg, Saxony-Anhalt, explained that the FarmRobotix platform could play a role in providing impetus in the dialogue between farmers, manufacturers and science in order to make the digital applications of different manufacturers compatible with each other. 

Schiller further explained the complexity faced by robots in crop cultivation, since the difficulty level of the tasks to be performed by agricultural robots was comparatively greater than the tasks involved in industrial production. 

DLG’s IPZ farm is part of several research projects on digitalisation and AI in crop production, including the NaLamKI project funded by Germany’s Federal Ministry of Economic Affairs. NaLamKI which stands for ‘Sustainable Agriculture with AI,’ is aimed at developing AI services for agriculture, capable of analysing data from conventional and autonomous agricultural machinery, satellites and drones, combining them in a software service platform and make the results accessible through open interfaces. 

As an associated partner in the project, the IPZ is working on the early detection of fungal diseases in wheat using AI. The aim of AI-supported detection of fungal diseases, which is being researched in the NaLamKI project, is to use multi- and hyperspectral image analysis to establish when a fungal infection has taken place in a crop. Apart from fungal pathogens however, the spectral properties of the leaf surface are influenced by a variety of external factors such as drought or plant nutrition. 

"It is therefore always crucial for AI systems that the data delivers accurate information about the properties to be recognised,” said Schiller. “Otherwise, AI models do not reflect what they are supposed to provide information about.”

For more information, visit: https://dlg-feldtage.de/en/

The whitepaper highlights how the development work behind Berry’s new Omni Xtra+ PE version has created a film with a comparable performance to PVC, and which can also be recycled. (Image source: Berry Global)

A new white paper from Berry Global outlines the solution to finding an alternative to traditional polyvinyl chloride (PVC) cling films for fresh food applications 

PVC has been the material of choice for many years for fresh food applications thanks to its many protective and presentation benefits. However, its complex composition makes it difficult to recycle and if even minute amounts of the material are processed with other polymers, it can render the other recyclates unusable.

The whitepaper titled: 'How Omni Xtra+ Can Drive More Recycling of Cling Films,' details the challenges that users of PVC cling films now face owing to its inability to be widely recycled and how the development work behind Berry’s new Omni Xtra+ polyethylene (PE) version has created a film with a comparable performance to PVC, and which can also be recycled.

While PE films for overwrapped trays would provide a more consistent supply of used film for recycling, the challenge has been to develop a PE film that can match the performance of a PVC version. Key to the development of OminXtra+ therefore was to develop a recyclable PE film via both kerbside and front-of-store PE waste streams that combined strength, stretchability, and excellent clarity and resistance to puncturing.

For more information, visit: https://www.berryglobal.com/ 

In addition to its scientific validation, BeCrop Technology stands out for its accessibility via API connections. (Image source: Adobe Stock)

Global agtech company, Biome Makers recently announced its contribution to the publication of two scientific studies validating the efficacy and reliability of the company’s revolutionary technology

These landmark papers demonstrate a significant leap forward in the field of soil health intelligence and predicting soil functionality. The first study titled 'Physicochemical properties and microbiome of vineyard soils from DOP Ribeiro (NW Spain) are influenced by agricultural management,' evaluated the impact of conventional and sustainable management systems of vineyards from DOP Ribeiro on the soil’s condition. The second study, titled 'Enrichment of putative plant growth promoting microorganisms in biodynamic compared to organic agriculture soils,' investigates regenerative versus organic agricultural soils in three locations in Germany and 21 locations in France.

Both these studies highlight the effectiveness of Biome Makers’ technology, BeCrop, and its proprietary indexes in microbial metabolism, soil bio-sustainability, while also detecting stress, nutrient deficiencies, and correlating with different management practices. The significance of these findings extends beyond Biome Makers’ own technology, by also highlighting the superiority of the soil database and intelligence over others in the market.

In addition to its scientific validation, BeCrop Technology stands out for its accessibility via API connections. This means that BeCrop's powerful soil intelligence solutions can seamlessly integrate into existing agricultural systems, enabling farmers and agricultural professionals to harness the benefits of advanced soil health assessment without disrupting their workflow.

"These papers are a testament to our commitment to transparency and scientific excellence," said Biome Makers’ Chief Science Officer and co-founder, Dr Alberto Acedo. "By opening our technology for peer review and validation, we aim to foster trust and collaboration while pushing the boundaries of soil health data and innovative technology."

For more information, visit: https://biomemakers.com/

By installing wear-resistant coatings, processing equipment will withstand abrasion from the coarse sugar cane. (Image source: Castolin Eutectic)

Castolin Eutectic’s technical lead, Raul Amor explains how excessive wear can be avoided to ensure that critical sugar processing machines will remain in service throughout the harvest

Sugar cane processors face the challenge that cane is extremely tough and can damage processing equipment. Components in harvesters, feed systems, knives and hammers in defibering units and crushers can all wear out quickly and even break down. But there is a solution: wearfacing coatings protect equipment from the damage caused by sugar cane. The benefits are that equipment will extract sugar more efficiently, last longer and need fewer repairs.

Sugar is big business and it is growing bigger. According to Fortune Business Insights, the worldwide sugar market is expected to grow to US$46.56bn by 2029, with operators in Asia Pacific having the biggest share of the market. Typically, mills process between 10,000 to 45,000 tons of sugar cane per day. They need heavy industrial machinery – and a lot of it – to do this. However, excess wear and breakages can stop production. This can be expensive due to repair costs, downtime and lower yields. 

Overcoming abrasion at every processing step

Abrasion from sugar cane, stones and earth can cause excess wear on washing, chopping, defibering and crushing systems. Wearfacing coatings can overcome this to enable operators to extract more sugar cane with less downtime. One particularly vulnerable area is rollers in cane crushers, which experience wear and breakages on their teeth. Being made of cast iron, the rolls need particular care. To prevent cracks forming, specialist welding electrodes for cast iron should be used.

It is important for the electrode material to have high hardness and corrosion resistance, which will provide additional wear resistance and ensure a long service life for the rollers. For rollers that experience a lot of damage from rocks and soil, some wearfacing materials offer better resistance to impact.

Wearfacing coatings can build the teeth sides and tips to their original shape so that the crusher will work more efficiently for higher yield. Several passes can be applied to rebuild the teeth with a serrated teardrop profile. This can even be done with an automated welding system to ensure uniform size and spacing between teardrops. It is also possible to apply a top layer of dots onto the sides of teeth while a roller is turning. This creates a rough surface that maximises juice extraction.

Case study: cost savings in action

Burning bagasse can also cause excess wear on fans, tubes and ducts. At one sugar cane mill, a boiler induced draft fan was suffering severe erosion caused by unburned bagasse and soil. These had begun to wear down important sections of the blades until, gradually, the entire rotor wore down. For an idea of the potential impact on production, the plant had four boilers, and each one with a fan.

In a previous attempt to repair the fan, a wearfacing had been applied by electrode welding in one area of the blade where wear had begun to affect the fan. However, this did not last. As an alternative, a Castolin Eutectic engineer applied an arc spray coating based on a 10 mil Arc 500 wire and 20 mil Arc 595 wire. This doubled the rotor lifespan without increasing the weight of the rotor or affecting its balance. 

The result: a more profitable production line

By installing wear-resistant coatings, processing equipment will withstand abrasion from the coarse sugar cane. By avoiding such wear and tear, equipment can last a whole milling season without downtime for repairs. Uninterrupted, each milling season will be more productive, and ultimately more profitable.

To find out more about wear resistant coatings, visit: https://www.castolin.com/sugar

More Articles …